Molecular Geometry Analysis of Glyceryl Tripalmitate
Keywords:
DFT, Glyceryl tripalmitate, 6-31G, B3LYPAbstract
Analysis of the structure of organic molecules can be carried out through computational quantum chemistry. In this study, I carried out quantum chemistry calculations using the density functional method to study the properties of the glyceryl tripalmitate molecule. DFT calculations were calculated using the hybrid function B3LYP at 6-31G* level. The geometric structure of the glyceryl tripalmitate molecule has an energy gap of 7.638 eV. The wavelength absorption that occurs in the glyceryl tripalmitate molecule is in the 165 nm and 208 nm region with electronic excitation contributing to π to π* orbital interactions.
Keywords: DFT, Glyceryl tripalmitate, B3LYP, 6-31G*
References
Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics 4, 1-17.
Knizia, G., (2013). Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts. Journal of chemical theory and computation 9, 4834-4843.
Knizia, G., Klein, J.E., (2015). Electron flow in reaction mechanisms—revealed from first principles. Angewandte Chemie International Edition 54, 5518-5522.
Leiva, M.C., Ortiz, R., Contreras-Cáceres, R., Perazzoli, G., Mayevych, I., López-Romero, J.M., Sarabia, F., Baeyens, J.M., Melguizo, C., Prados, J., (2017). Tripalmitin nanoparticle formulations significantly enhance paclitaxel antitumor activity against breast and lung cancer cells in vitro. Scientific Reports 7, 13506.
Lu, T., Chen, F., (2012). Multiwfn: a multifunctional wavefunction analyzer. Journal of computational chemistry 33, 580-592.
Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A.R., Hatamjafari, F., (2021). Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo [d] thiazole-2 (3 H)-imine and its para-substituted derivatives: Solvent and substituent effects. Journal of Chemical Research 45, 147-158.
Neese, F., (2012). The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science 2, 73-78.
Neese, F., Wennmohs, F., Becker, U., Riplinger, C., (2020). The ORCA quantum chemistry program package. The Journal of chemical physics 152, 224108.
Pelaquim, F.P., de Matos, F.C., Cardoso, L.P., Batista, E.A.C., de Almeida Meirelles, A.J., da Costa, M.C., (2019). Solid-liquid phase equilibrium diagrams of binary mixtures containing fatty acids, fatty alcohol compounds and tripalmitin using differential scanning calorimetry. Fluid Phase Equilibria 497, 19-32.
Pellegrino, L., Tyagi, G., Robles, E.S., Cabral, J.T., (2022). Phase behaviour of model triglyceride ternary blends: triolein, tripalmitin and tristearin. Physical Chemistry Chemical Physics 24, 29413-29422.
Singh, R., Verma, D., Kumar, A., Baboo, V., (2012). Synthesis, molecular structure and spectral analysis of ethyl 4-[(3, 5-dinitrobenzoyl)-hydrazonomethyl]-3, 5-dimethyl-1H-pyrrole-2-carboxylate: A combined experimental and quantum chemical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 88, 60-71.
Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994). Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of physical chemistry 98, 11623-11627.
Tirado-Rives, J., Jorgensen, W.L., (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of chemical theory and computation 4, 297-306.
Yusoff, M.H.M., Abdullah, A.Z., (2016). Catalytic behavior of sulfated zirconia supported on SBA-15 as catalyst in selective glycerol esterification with palmitic acid to monopalmitin. Journal of the Taiwan Institute of Chemical Engineers 60, 199-204.